Radiation Protection Glossary
A radiation protection glossary for Radiation Protection Supervisors (RPS), Radiation Protection Advisers (RPA) and anyone else interesting in radiation safety terms and definitions. The glossary is a mixture of health physics , phrases related to radiation protection legislation, transport, practical safety, technical terms and similar.
Search the Glossary by either clicking on a letter or typing a keyword into the search box. This glossary is relational so when looking at one term you can click through to other related terms as required.
For formal advice, see our Radiation Protection Adviser pages.
D
Dead Time
Dead Time is used in counting / detector systems to describe the time between two recorded events (e.g. where an Ionisation event has been recorded), where either the detector, or its electronics, are unable to detect other incoming events. A counting system which has a large dead time will more than likely miss true events that occur at intervals less than the dead time.
Dead Time is used in counting / detector systems to describe the time between two recorded events (e.g. where an Ionisation event has been recorded), where either the detector, or its electronics, are unable to detect other incoming events. A counting system which has a large dead time will more than likely miss true events that occur at intervals less than the dead time.
Decay
Also known as Radioactive Decay. Radioactive substances undergo radioactive decay, the rate of which is determined by the properties of the radionuclide. As decay proceeds the resulting activity of the parent Nuclide reduces and will eventually disappear. The daughter product may be stable (inactive) or may itself be Radioactive and undergo further decay (i.e. as part of a decay series). The rate of decay can be expressed in terms of its Half-Life (the time taken for the activity to reduce by half).
Also known as Radioactive Decay. Radioactive substances undergo radioactive decay, the rate of which is determined by the properties of the radionuclide. As decay proceeds the resulting activity of the parent Nuclide reduces and will eventually disappear. The daughter product may be stable (inactive) or may itself be Radioactive and undergo further decay (i.e. as part of a decay series). The rate of decay can be expressed in terms of its Half-Life (the time taken for the activity to reduce by half).
Decay Constant
The decay constant represents the probability of a Decay of a Radioactive material per unit time.
The decay constant represents the probability of a Decay of a Radioactive material per unit time.
Decay Product
A radionuclide produced as a result of a parent radionuclide's decay. The decay products may be derived from their immediate predecessor, of through several other decays in a decay chain series. One example would be Radon Decay products where Ra-222 will decay to products including Polonium 218 (via alpha decay) and then Lead-214 (also alpha decay).
A radionuclide produced as a result of a parent radionuclide's decay. The decay products may be derived from their immediate predecessor, of through several other decays in a decay chain series. One example would be Radon Decay products where Ra-222 will decay to products including Polonium 218 (via alpha decay) and then Lead-214 (also alpha decay).
Decommissioning
A general term applied to situations were nuclear plant (or any other plant containing sources of Ionising Radiations) comes to the end of its useful life. Decommissioning is then required in order to dismantle the plant and recover Radioactive materials for either reuse, recycling or disposal. Decommissioning uses an extremely controlled approach and on larger plants (e.g. nuclear power stations) will require full Safety Cases and regulator attention.
A general term applied to situations were nuclear plant (or any other plant containing sources of Ionising Radiations) comes to the end of its useful life. Decommissioning is then required in order to dismantle the plant and recover Radioactive materials for either reuse, recycling or disposal. Decommissioning uses an extremely controlled approach and on larger plants (e.g. nuclear power stations) will require full Safety Cases and regulator attention.
Decontamination
A general expression applied to situations where undesirable Contamination is removed from plant, fixtures, fittings or people. This process may simply be wiping up the contamination with a tissue, although could require applying an industrial striping technique. Two more specific subsets of this term are Environmental Decontamination and Personal Decontamination.
A general expression applied to situations where undesirable Contamination is removed from plant, fixtures, fittings or people. This process may simply be wiping up the contamination with a tissue, although could require applying an industrial striping technique. Two more specific subsets of this term are Environmental Decontamination and Personal Decontamination.
Dental x-ray
A diagnostic procedure undertaken by a Dental Surgeon / Nurse, usually involving patient exposure to x-rays where by the required image is captured on a film, which is then developed and used for assessment and treatment planning. The level of x-ray's are carefully controlled and usually amount to a small fraction of normal annual background radiation.
A diagnostic procedure undertaken by a Dental Surgeon / Nurse, usually involving patient exposure to x-rays where by the required image is captured on a film, which is then developed and used for assessment and treatment planning. The level of x-ray's are carefully controlled and usually amount to a small fraction of normal annual background radiation.
Depleted Uranium
A by-product of Enriched uranium production. Depleted Uranium can be used as Radiation Shielding) (approximately twice as effective as lead for gamma rays), battle armour and in conventional weapons (its high density and self-sharpening properties being more important than its modest Ionising Radiation proprieties).
A by-product of Enriched uranium production. Depleted Uranium can be used as Radiation Shielding) (approximately twice as effective as lead for gamma rays), battle armour and in conventional weapons (its high density and self-sharpening properties being more important than its modest Ionising Radiation proprieties).
Deterministic Effect
A deterministic effect describes Ionising Radiation induced damage where a Dose threshold exists, and for which the severity of damage increases with increasing Dose above that threshold. Examples will include radiation burns (skin reddening), hair loss, cataracts and radiation sickness (nausea, vomiting and diarrhoea). All of these effects results from acute high doses of radiation to either a part of the body or the whole body. For whole body exposure it is generally thought that an absorbed dose of between 3-5 Gy will cause 50% of those exposed to die within 30 days if medical intervention is not given. This is known as the LD-50 dose.
A deterministic effect describes Ionising Radiation induced damage where a Dose threshold exists, and for which the severity of damage increases with increasing Dose above that threshold. Examples will include radiation burns (skin reddening), hair loss, cataracts and radiation sickness (nausea, vomiting and diarrhoea). All of these effects results from acute high doses of radiation to either a part of the body or the whole body. For whole body exposure it is generally thought that an absorbed dose of between 3-5 Gy will cause 50% of those exposed to die within 30 days if medical intervention is not given. This is known as the LD-50 dose.
Detriment (Radiation)
With respect to Radiation Protection, detriment is a term used to describe the 'total harm' experienced by exposing a population (and their descendants) to Internal Radiation. ICRP uses detriment to effectively sum all the Risks (probabilities) that exposure to ionising radiations might produce. For example it will include probability of fatal cancer induction, non-fatal cancer induction (and therefore years of life lost). It therefore as the dimensions of probability and thus can be expressed as a risk. In ICRP publication 60, radiation detriment is developed and used to derived Dose Limits.
With respect to Radiation Protection, detriment is a term used to describe the 'total harm' experienced by exposing a population (and their descendants) to Internal Radiation. ICRP uses detriment to effectively sum all the Risks (probabilities) that exposure to ionising radiations might produce. For example it will include probability of fatal cancer induction, non-fatal cancer induction (and therefore years of life lost). It therefore as the dimensions of probability and thus can be expressed as a risk. In ICRP publication 60, radiation detriment is developed and used to derived Dose Limits.
Disposal
A general term applied to Radioactive Wastes which require disposal, for which there is no intention of recovery. In reality there may be circumstances where some capability for recovery is maintained (e.g. ILW wastes at UK nuclear power stations).
A general term applied to Radioactive Wastes which require disposal, for which there is no intention of recovery. In reality there may be circumstances where some capability for recovery is maintained (e.g. ILW wastes at UK nuclear power stations).
Distance
Distance, in the context of Radiation Protection, relates to one of the three key principles of protection against External Radiation hazards (i.e. Time, Distance & Shielding). In simple terms, increasing the distance between a static source of Ionising Radiation and the absorbing medium (e.g. a person) will reduce the exposure to that person. For certain defined geometries, (e.g. Point Source), the Inverse Square law can be applied which can be stated as: 'double the distance, quarter the dose'.
Distance, in the context of Radiation Protection, relates to one of the three key principles of protection against External Radiation hazards (i.e. Time, Distance & Shielding). In simple terms, increasing the distance between a static source of Ionising Radiation and the absorbing medium (e.g. a person) will reduce the exposure to that person. For certain defined geometries, (e.g. Point Source), the Inverse Square law can be applied which can be stated as: 'double the distance, quarter the dose'.
DNA
The full name for DNA is Deoxyribonucleic Acid. DNA is a substance found in the nucleus of living cells and is used to encode genetic information. Its use is to determine the structure, function and behaviour of all cells in a living entity. It is relevant to Radiation Protection since it is at the DNA level that concern is raised by the effects of Ionising Radiation, which may lead to cancer induction or genetic damage.
The full name for DNA is Deoxyribonucleic Acid. DNA is a substance found in the nucleus of living cells and is used to encode genetic information. Its use is to determine the structure, function and behaviour of all cells in a living entity. It is relevant to Radiation Protection since it is at the DNA level that concern is raised by the effects of Ionising Radiation, which may lead to cancer induction or genetic damage.
Dose
'Dose' is a general term applied to the quantity of Ionising Radiation received by an exposed body (person, part of a person or object). Some degree of care is required when using the word 'dose' since it can mean a number of different quantities. Furthermore it is more often useful to express the dose in units which give the magnitude of damage sustained or perhaps the risk of cancer induction at some time after exposure. It is usually more useful to prefix (or postfix) terms which identify the quantity under consideration, e.g. Absorbed Dose, Effective dose, Dose Equivalent. At a fundamental level, 'Dose' may be best described as 'the amount of radiation absorbed per unit mass of material with which it interacts with'.
'Dose' is a general term applied to the quantity of Ionising Radiation received by an exposed body (person, part of a person or object). Some degree of care is required when using the word 'dose' since it can mean a number of different quantities. Furthermore it is more often useful to express the dose in units which give the magnitude of damage sustained or perhaps the risk of cancer induction at some time after exposure. It is usually more useful to prefix (or postfix) terms which identify the quantity under consideration, e.g. Absorbed Dose, Effective dose, Dose Equivalent. At a fundamental level, 'Dose' may be best described as 'the amount of radiation absorbed per unit mass of material with which it interacts with'.
Dose Equivalent
Dose Equivalent (some refer to this as Equivalent Dose) is a quantity which takes into account 'radiation quality' which relates to the degree in which a type of Ionising Radiation will produce biological damage. The Dose Equivalent is obtained by multiplying the Absorbed Dose by a Quality Factor. The resulting quantity can then be expressed numerically in Rem (old units) or more commonly Sieverts (Sv). It is worth emphasising that the quantity is independent of the absorbing material (i.e. tissue, water, air).
Dose Equivalent (some refer to this as Equivalent Dose) is a quantity which takes into account 'radiation quality' which relates to the degree in which a type of Ionising Radiation will produce biological damage. The Dose Equivalent is obtained by multiplying the Absorbed Dose by a Quality Factor. The resulting quantity can then be expressed numerically in Rem (old units) or more commonly Sieverts (Sv). It is worth emphasising that the quantity is independent of the absorbing material (i.e. tissue, water, air).
Dose Limits
With respect to Radiation Protection, dose limits (an accumulated dose) are recommended by international bodies such as the ICRP, and then set as legal limits within individual counties legislation. For example, in the UK Dose Limits to employees, members of the public, pregnant employees etc are set out in the Ionising Radiations Regulations 2017 (takes you to our guide). Whilst dose limits set a legal maximum, the practice of radiation protection requires that all doses are kept as low as reasonably practical (ALARP) as required by the ICRP concepts of Optimisation and Limitation.
With respect to Radiation Protection, dose limits (an accumulated dose) are recommended by international bodies such as the ICRP, and then set as legal limits within individual counties legislation. For example, in the UK Dose Limits to employees, members of the public, pregnant employees etc are set out in the Ionising Radiations Regulations 2017 (takes you to our guide). Whilst dose limits set a legal maximum, the practice of radiation protection requires that all doses are kept as low as reasonably practical (ALARP) as required by the ICRP concepts of Optimisation and Limitation.
Dose Rate
Dose rate is a term applied for the rate at which Ionising Radiation is being absorbed by a medium (e.g. tissue). Whilst it is accurate to apply a prefix or postfix (e.g. 'absorbed dose rate'), the term is probably most often applied to Effective dose, which is a useful quality in expressing harm or overall risk of harm from whole body irradiation.
In the UK Ionising Radiations Regulations 2017 (IRR17), dose rate has a specific meaning which is stated as 'in relation to a place, the rate at which a person or part of a person would receive a dose of ionising radiation from external radiation if that person were at that place, being a dose rate at that place averaged over one minute'. For the UK this is an important definition, particularly where there might be very short term higher instantaneous dose rates (IDR) for a few seconds, where otherwise the dose rate is no greater than background. Workplaces such as linear accelerator medical treatment rooms could fall into this category, where the higher dose rate beam rotates around a primary shield - yielding a higher IDR (say 10 micro Sv/h) for 2 seconds, but otherwise yielding background (say 0.05 micro Sv/h) for the rest of the minute. In this example the dose rate, averaged over a minute, would be < 0.4 micro Sv/h. The same analysis can be applied to cargo / freight / food / beverage x-ray screening systems which use a shielded curtain which will open and close as items pass through.
Dose rate is a term applied for the rate at which Ionising Radiation is being absorbed by a medium (e.g. tissue). Whilst it is accurate to apply a prefix or postfix (e.g. 'absorbed dose rate'), the term is probably most often applied to Effective dose, which is a useful quality in expressing harm or overall risk of harm from whole body irradiation.
In the UK Ionising Radiations Regulations 2017 (IRR17), dose rate has a specific meaning which is stated as 'in relation to a place, the rate at which a person or part of a person would receive a dose of ionising radiation from external radiation if that person were at that place, being a dose rate at that place averaged over one minute'. For the UK this is an important definition, particularly where there might be very short term higher instantaneous dose rates (IDR) for a few seconds, where otherwise the dose rate is no greater than background. Workplaces such as linear accelerator medical treatment rooms could fall into this category, where the higher dose rate beam rotates around a primary shield - yielding a higher IDR (say 10 micro Sv/h) for 2 seconds, but otherwise yielding background (say 0.05 micro Sv/h) for the rest of the minute. In this example the dose rate, averaged over a minute, would be < 0.4 micro Sv/h. The same analysis can be applied to cargo / freight / food / beverage x-ray screening systems which use a shielded curtain which will open and close as items pass through.
Dosimeter
A general term applied to devices designed to record Personal Exposure, as apposed to Environmental Exposure. The devices may be in the form of a Passive Dosimeter or an Active Dosimeter. Passive dosimeters will include Film Badges and TLD, whilst active dosimeters will include EPDs. The dosimeter is the standard way of measuring personal exposure for the purposes of complying with statutory Dose Limits.
A general term applied to devices designed to record Personal Exposure, as apposed to Environmental Exposure. The devices may be in the form of a Passive Dosimeter or an Active Dosimeter. Passive dosimeters will include Film Badges and TLD, whilst active dosimeters will include EPDs. The dosimeter is the standard way of measuring personal exposure for the purposes of complying with statutory Dose Limits.
Dosimetry
Dosimetry is a general term applied to the practice of measuring radiation exposure. Dosimetry has a wide scope in Radiation Protection, see Dosimeter, Passive Dosimetry, Active Dosimetry and Biological Dosimetry for more specific information.
Dosimetry is a general term applied to the practice of measuring radiation exposure. Dosimetry has a wide scope in Radiation Protection, see Dosimeter, Passive Dosimetry, Active Dosimetry and Biological Dosimetry for more specific information.
The ultimate paradox, of course, is that even though we're all going to die, we've all got to live in the meantime…